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SUMMARY

The classical estimator of the mean of a finite population is the sample
mean. Two new estimators are introduced based on the order statistics of
a simple random sample. It is shown that these estimators are considerably
more efficient than the sample mean for all sample sizes small or large
over a very wide family of symmetric distributions. These results are
extended to stratified sampling. Skew distributions will be considered in
a future paper.
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1. . Introduction

Let y,, ¥, - ¥, be @ simple random sample (drawn without replacement)
from a finite population ITy consisting of the elements Y,,Y,, ... Yy. Let

Y =

Al

N R .
Yy, ' 1.1
i=1 ’

be the mean of HN. The classical estimator of y is the sample mean

y= 11—] 3y a2
i=1

which is very widely used in sample survey procedures.

There are essentially two approaches in sample survey. One approach is
to consider the finite population Iy as having been selected at random from

a hypothetical population (referred to as a super-populatiou); the observed
simple random sample y,,y,, ..., Y, being a random sample from Ty, is also

a random sample from the super-population. The second approach does not
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make any reference to a super-population in which case the empirical
verification entails repeatedly sampling the same objective finite population IT.

For philosophic foundations-of these two approaches, the reader is referred to
Cochran [5] and Godambe [11]."

The sample mean  is an efficient estimator of Y, with either of the two
approaches, if the underlying distribution is normal. However, non-normal
distributions are more prevalent in practice; see Elveback, Guillier and
Kerting [9], Huber [12] and Tiku, Tan and Balakrishnan [24). We consider
two other estimators. The first one is due to Tiku ({14], [18]) and has already
been introduced in sample survey (Tiku [19]). The second one is due to Tiku
and Suresh (23] and is introduced in sample survey in this paper. The
efficiencies of both these estimators are evaluated in the framework of
super-population models. It is shown that both are considerably more efficient
than the sample mean y. It is illustrated that these efficiency properties also
hold in the framework of finite population models. Extensions to stratified
sampling are discussed.

2. Super-Population Model

Most classical statistical procedures are based on the assumption of
normality. This assumption, however, is unrealistic from a practical point of
view. To quote R.C. Geary (Biometrika, 1947): “Normality is a myth; there
never was, and never will be, a normal distribution”. This might be an
overstatement, but the. fact is that non-normal distributions are more prevalent
in practice, and to assume normality instead might lead to-erroneous statistical
inferences. We will, therefore, consider a super-population model representing
a wide class of location-scale symmetric distributions. This important class
consists of the distributions

) 27 .
f(y;p) = 11 : {1+(1k ‘;)} , —o <y<e 2.1)
UVK_B(E,[)—E) ¢

where k=2p-3 and p 2 2. Note that E(y)=pn and V (y)=0> For
1<p<2,k is taken to be equal to 1 in which case p and o are simply the
location and scale parameters, respectively. For p = «, (2.1) reduces to a normal
distribution N (i1, 6%). For p=1, (2.1) represents a Cauchy distribution. In fact,
t=Vv (y—p)/oVk has Student’s distribution with v= 2p-1 degrees of
freedom. The kurtosis u,/ u.i (Pearson measure of non-normality) of the family

(2.1) ranges. between 3 ( when p=co) and infinity (when p<2.5).
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3. Estimators of Location

In the framework of super-populatlon model let y,, yz,. .Y, be a simple
random sample from II.

Classical estimator : The classical estimator of Y = Y is the sample
mean y=Yy,

2 A (3.1)

?N_n be the mean of the remaining N —n observations in II,. Now
— n - a )—
YN 'ﬁyn"'(l—ﬁ]YN—n, (3.2)

Realize that y and _Y—N_n are unconditionally independent (Fuller [10]).
Therefore,

7 n

2
EQ@,-Yy) =(1 —] E{ Fp-W=Tnon—p)Y

2 2 2 2
n c o o
_(I_NJ {n +N—n} (3.3)

which is, of course, a well-known result. The classical estimator of o° is

n

2 _ _1 o

S _n"lz(yl y)
=1

Note that EGH—?N)=0 since E(y )=u and E(?N_n)=u.

Robust estimator : One of the most popular robust estimator of i is due
to Tiku ([14), [18)). This estimator is based on the symmetric type 11 censored
sample

Ye+1) S Ye+2) £ - S Ya-n (3.9

obtained by arranging the observations y,,Y,, .., Y, ii ascending order of
magnitude and censoring the r smallest and largest observations. The underl);ing

super-population model for (3.4) is presumed to be normal N (i, o). This is
supported by the premise that non-normality essentially comes from the tails
(Tiku er al. [24], pp. 22-25) and once the extreme observations (representing
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- the tails) are censored (given zero weights), there is hardly any difference
between a normal and a non-normal sample.

The robust estimator-of p is (Tiku ([14], [18]); Tiku er al. [24]),

Y Yo+ B Gpryt Yoo

, = < — 3.5)

with V(i) = ('V1)0?/m? (3.6)

where 1'=(0,..,0,1+rf,1,..,1,1+rB,0,...,0) is a nx1 vector of
constant coefficients and V is the nxn variance-covariance matrix of the
standardized order statistics Zg = {y(i)— pi/o(i=1,2,...,n). These

variances and covariances are available for the family (2.1); for p=1 in
Barnett [2] and Vaughan [27], for p=1.5 in Vaughan [25], for p=2(.5) 10
in leu and Kumra [21}, and for p =« in Biometrika Tables Vol. II. Note that
E(u) p; this follows from the fact that E (Z(;))‘ E{ Zoi +1)}

(i=1,2,..,n). For p=c (normal distribution), V (ﬁc) = 0*/m (Tiku [16]).
The robust estimator of o is

0.={ B+ V(BT+4AC) }/2V{AA-1)) 3.7

In (3.5) - 3.7), m=0-2r+2rB, A=n-172r, B=ra(y(n_r)—y(m) } and

n-r A
C= z y%i) + 1B (yfm)+ y%n_r) )—'m uﬁ (3.8)

r+1

The constants a and B are obtained from the equations
B=-00(t-00/q)/ qandet = {6®/q)}-Pt. @=r/n) (3.9)
where ;p(';) = (2ny"exp(-2*/2) and t is determined by the equation
J‘Lw $(z)dz=1-q. It is easy to evaluate the values of o and B. A table of

their values is, however, given in Tiku er al. ([24], pp. 74-75) for convenience.

For symmetric population, r is chosen to be. the integer value
r=[0.5+0.1n] for reasons given in Tiku [18]. For symmetric populatxou with
nonexistent variance (Cauchy, for example), the efficiency of u is further

enhanced by taking r=[0.5+0.3n]; see Tiku [18].

P P S
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Since ﬁc and ?N_n are unconditionally independent
2
— o —
Ef - Y=V +y -2y Covlie¥) 610

. Note that E (ﬁc - _Y_N) =0

n
Since yn = ZFI y(l)/ n
Cov (i, ¥,) = (' Vw)o*/m 3.11)

where 1’ and V are the same as in (3.6) and w’ is the nXx1 vector
(1/n, Vn, ..., Un).

If we put r equal to zero in (3.4) - (3.8), then ﬁc and 8} reduce to the

sample mean y and the sample variance s2, respectively.

MML estimator : Consider the super-pophlation model (2.1). In the first place
we assume that p is known. Let

be the order statistics of the random sample y,, y,, ..., ¥,. The likelihood function

of these order statistics is
p
n n . o )'Z
Le<|1] T [1 ot (3.13)
0] i ko

The ML (maximum likelihood) estimatdrs of u and ¢ are solutions of the
equations

dlnL dInL
an 0 and 30
These equations are intractable and have no explicit solutions. Solving them
by iteration is problematic. For small values of p, particularly, one can encounter
multiple roots, slow convergence or convergence to wrong values; see
Barnett [3], Tiku and Suresh [23] and Vaughan [26). MML estimators are

obtained by replacing L by an asymptotically equivalent function L" such that

=0 (3.14)

im L 1L-L7=0 - (3.15)

n—co
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For details about this methodology, see Tiku ([14], (15), [17)), Tiku et al. [24],
Tiku and Stewart [22] and Tiku and Suresh [23). The MML estimators of p
and ¢ are thus obtained :

i, = , 2B Ya) /M, M=) B, (3.16)
i=1 i=1
and
Gy = {B+V(BZ+4n0) }/2 va@-1) (3.17)

o: = C/(n-1) since B? is very small as compared to C. Here

2 2 A 2
B=‘k2 2. % ygandC =‘£ 2 Bty — i) = ‘lf‘
el i

=1

h Bygy~ Mﬁrzl }
= 1

and the constant coefficients ®, and B, are obtained from the equations

ty = Elzg) |

2/k) & 1-/K) ¢
gy g WG
[1+(1/k) ) [+ 1K) ]
' (3.18)

Note the umbrella-ordering of both o and B,. In fact, o is of order o (ta;

and B, is of order o (tg). Consequently, the extreme observations in (3.16) —

(3.17) get small weights. That makes the estimators above robust to outliers.
For p=c (normal distribution), o =0 and B,=1G=12,..,0).

Asymptotically, ﬁn and Gn are minimum variance bound estimators. The
minimum variance bound for estimating p is

MVB (1) = {(p—%)(p+l)/ ap (p—%}} o for p22 (3.19)

={(p+1)/2np (p—%}}oz for 1 <p<?2

In fact, the variance V (ﬁn) is very close to (3.19) for all n > 5 (Tiku and Suresh
[23], Table 1; Vaughan [26]).
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Since tg = 4oy ﬁn is an unbiased estimator of p. Consequently,
E (ﬁn—?N)=0 and since ﬁn and —Y_N_n are unconditionally independent
_ 2
EQ -Y,) = V({ip+ 2L -23 Cov (i, ) (3.20)
N n N .
The covariance term is evaluated exactly the same way as in (3.10).

4. Efficiency of the Estimators

Equations (3.3), /(\3.10) alll\d (3.20) give the foll_owing results of MSE (mean
square error) of ¥, i, and L : :

E,-Yy)" < E@l,- Yy and EG,-Yy)' < B, - Yy’

if o*/n <B, and o’/ n < B,, respectively. The bounds B, and B, are given
by

A n 02 A~
By =V@)+25 1, ~ Cov (e ¥o) 4.1
A ~ N 02 A -
and B, =V (u.,,)+2§ e Cov (b, ) (42)

The exact values of the variances V(ﬁc) and V (ﬁn) and covariances
Cov (ﬁc, y,) and Cov (ﬁn, y,) are given in Appendix. Using this Appendix, the
exact values of B, and B, were calculated for the representative values

p=2,35,5and= and sample size n=6,10 and 20. For p=5,(2.1) is
indistinguishable from a logistic distribution since the two have the same first

four moments (Pearson [13]; Tiku and Jones [20]). The values of 0%/ n and
B, and B, are given in Table 1 for the sample fraction n/N = 0.1 and 0.2.

In most surveys n/ N is less than or equal to 0.1 but, for a broader coverage,
we included the value n/N=0.2. '
It is clear from Table 1 that ﬁc is more efficient than y_except when
p = . The estimator ﬁn is more efficient than y_except when p = in which
case the two estimators are identical and have, therefore, the same efficiency.
All this is because 0%/ n is greater than B, except when p=-eo and is greater
than B, always except when p=-co in which case 0%/ n is equal to B,. Note
that for p < 2, the sample mean y_has zero efficiency since its MSE is infinite.
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The exact values of the MSE of the estimators y, ﬁc and ﬁn are also
calculated for n=6, 10 and 20 and p=1.5,2, 3.5, 5 and  and given in Table 2

Table 2. Exact values of the mean square errors of the estimators, sample size n=10

P WN MSE §,)/0®> MSE(i)/o® MSE(i)/ o
1.5 0.1 w 0.1255* 0.0849
2 w 0977% 0705
2 0.1 0.0900 0.0613 0.0548
2 0800 0573 0546
3.5 0.1 0.0900 0.0838 0.0809
2 0800 0754 0728
5 0.1 0.0900 0.0882 0.0861
2 0800 0791 0769
w 0.1 0.0900 0.0935 0.0900
2 0800 0835 0800

* For r = [0.5 + 0.3n), the MSE are 0.0868 and 0.0718 for /N = 0.1 and 0.2, respectively.

for n= 10 only, for brevity; the values are similar for n=6 and 20, and higher
values of n. For p <2 the sample mean y_ has infinite MSE and is, therefore,

a very poor estimator as compared to ﬁ and ﬁ For all values of p2>2,
y, has larger MSE than both u and u unless p = « (normal distribution)
in Wthh case y has somewhat smaller MSE than u but has the same MSE
as u Clearly, un is the most efficient esumator and is considerably more
efficient than y . It may be noted, however, that u is an omnibus estimator:

it does not depend on any particular value of p in (2.1) and can also be used
for other models, e.g., when the sample contains outliers or the sample comes
from a mixture of two normal dlSU‘lbuUOHS (Tiku er al. [24], Section 5.8).
ThlS is not to say that u (and o ) cannot be used in such situations.. In fact

u (and o ) can be worked out for any location-scale dlSU‘lbllthl] of the type

(1/ o Y[ (y )/ o] and will surely be more efficient than u The expressions
for un and on, however, will have to be worked out for each family and these

expressions involve specialized tables of expected values of order statistics; see
also Vaughg\n [26] for some important remarks and steps to be followed in
calculating o,.
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Estimating the shape parameter :

In calculating ﬁn and Sn we assumed that the shape-parameter p in (2.1)

is known. In practice, there might be situations when p is not known. In such
situations, one obtains a plausible value of p from a Q — Q plot (see Section
7) or estimates p by solving the equation

dlnL/3p=0 (4.3)

The solution of this equation is rounded to the nearest integer or half-integer
since the expected values of order statistics for fractional value of 2p are not
available. The )arameter p in (2.1) is equated to this estimated value and the
calculation of p_ and o proceeds as before. The equations (4.3) has no explicit

solution. Therefore, p has to be obtamed iteratively. One starts with a guessed
value p=p, and calculates u and o from (3.16) - (3 18). These values are

substituted in (4.3). If d In L/ 3 p is close to zero, then un and on are the required

estimates. If not, one repeats this process with a different value of p and
continues till aAIn L/ ap gets close to zero. This iteration process is easy to
carry out since j1 and o are explicit functions of sample observations. Similar

estimators have been developed by Tiku [15] and Cohen and Whitton ([7],
(8).
To evaluate the effect of estimating p on the MSE of ﬁn, we did an

extensive Monte Carlo simulation study. We were pleased to notice that the
effect of estimating p as agamst not estimating p is to mcrease the MSE of
p. but only marginally. Thus u retains its superiority over u and y, in terms

of having smaller MSE. It must be said, however, that although p. trails behind
u in terms of efficiency but its simplicity is remarkable and the fact is that
it is on the whole considerably more efficient than y y,- It may also be noted
that for near-normal populations, the linear convex combination estimator

My = @/N)Y,+(1-n/N), (4.9)

has smaller MSE than ﬁc; see Tiku [19] for details.

5. Finite Population Mode!l

For finite population models, as said earlier, the clements
Y, (i=1,2,..,N) of IT are fixed. A sample y, (i=1,2, ..., n) consists of n of

these elements chosen at random without replacement. The order statis;\ics of
this sample are substituted in (3.5) - (3.8) and (3.16) - (3.18) to obtain i and

i, (and G, and G ).

T
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It is well known that E (Yn)=—Y_N and E(y, —?N)2= (S*/n) (1 -n/N),
N —
§2=Y  (Y,- Y/ (N-1). The expected values of i, fi_ and their MSE
i i=1 .

are obtained exactly the same way as before, the only difference being in the
expected values, variances and covariances of the order statistics
Yo (i=1,2,..,n) which are now obtained as follows :

The sampling distribution of y, is given. by (Brownlee [4], Section 3.8;

Wilks (28], pp. 243, 252) :
-1 |[N-t
i-1 ){n—i

P{yy=Ygp 1= TN PN, o, i (), say (5.1)
n N

wheret=i,i+1,..,.N—n+i

The joint sampling distribution of Yo and Yo is given by (i<j)

t,-1)(t,~t,-1)(N-t,
i1 )| j-i-1 J| o

PY®H=YepYo=Yo? = - (NJ
‘ n

= pN, n, l,j (tl’ tz) . (5.2)
where t, = i,i+1,.,N-n+iandt, = Jj+1,..N—n+j. Thus.
N-ni -
EG) = X YoPyni © (53)
t=1
R N-n+i
EGG) = 2 Yo Py @ 54
t=i
N-n+i N-n+j
and EGeyp)=2 2 Yo Yo Pyt 69

t=i L)

The expressions (5.3) - (5.5) can be computed from the ordered
Y (i=1,2,..,N) values in TI,. As a check on these computations, if
Y6 (i=1,2,..,N) are replaced by the integers 1, 2, ..., N, respectively, then
(Wilks [28], pn. 243, 252) ‘
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E(yp) = % (5.6)
V) = EGE) - [Ee) P = & ‘(‘r‘l)f;');’ (ln)i“l)‘”“ 5.7)

and -

Cov (ygy ¥y = E g Yg — EGe) E Ogy)

=i(n—j+1)(12\{—n)(N+l) 5.8)

(n+1) (n+2)

A further check on these values is that

EG,) = Wi, ,=YandV y)=w Vw=(S*/n)(1 -wN) (5.9)

where . =E{y;}, g, ,=Cov (y(i), Yo ) and V= (oij:n) G,j=1,2,...n)
is the n X n variance-covariance matrix. g

Efficiency of the estimators : Regarding 1 as a fixed finite population,

a random sample of size N is generated from the symmetric family (2.1); see
also Tiku [19]. The exact values of the relative efficiencies calculated from
(5.1) — (5.5) are given below for the representative values n=20 and
n/N = 0.1 and 0.2, p=1.5,2.5,5and «:

EG. — Yo ) E@{. - Yy )?
E1=100'\/ M{ andE2=100v——(—,¥£—_—N)2 (5.10)
E(uc_YN) E(“'n—YN)

Relative efficiencies
n/N=0.1 /N =02
1.5 25 5 o0 15 25 5 o
E, 302 114 102 96 . 113 103 101 95
E, | 360 . 123 105 100 128 108 103 100

It is clear that ﬁc and ﬁn are both considerably more efficient than

y_ except when |)£w (normal distribution) in which case ﬁc is a little less
. . A, . - . . A

efficient but p_is as efficient as y . For symmetric populations, pu. and
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ﬁn are both unbiased estimators of ?N. Of course, Y, is_' an unbiased estimator
of 7N always. Note that the relative efficiencies have essentially the same

magnitudes under finite- population as well as super-population models and do
not depend on the size n of the simple random $Sample. We have not reproduced
the values for large n for brevity.

Although it is reported above the relative efficiencies only for a small
sample of size n = 20 but, it may be noted, that these results hold true for
all values of n howsoever large, for fixed wN. -

6. Standard Errors

The following results on standard errors are true under both
super-population as well as finite-population models :

The standard error of y_is, for all population with finite mean and variance,

i‘J{%[l—%]sz} g . ;6.1)

This result is quite well known. -

given by

If the underlying population is normal N (u, 0%, then .
2

Cov (i, ¥,) = ‘f—, S 6.2)

This follows from the well:known result that the sum of each row (and
each column) of the variance-covariance matrix of the order statistics of a
random sample of size n from a normal population N (0,1) is 1. Using this
result, it immediately follows from (3.10) that for a normal population

N (u, o?) the standard error of ﬁc is given by

+ \/{%(1—%]32} " (6..3)

since V (ﬁc) = o/ m as said earlier. Tiku ({19}, p. 2048) showed that (6.3),
due to the fact that V (\/_nTﬁc/GC) = 1 for normal as Wé_ll as symmetric

non-normal populations, gives close approximations to the true standard error
always.
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The standard error of ﬁn for the family (2.1) is closely approximated by
(equation 3.19)

-
[ —EJ(IHI)
. n) A
+ ( I (l_ﬁ] o, p22) 6.9
np p"i

This is due to the fact that Cov (ﬁn, y,) is very close to V (ﬁn); see Table A.
Thus (3.20) is closely approximated by

n A 02 n A
(I—EJV(M.")-FF{I—? V(l.ln)} 6.5)

Realizing. that 0 < (n/ %) V (L) <1, the standard error of I to order
0 (N"'?) is given by (6.4). An extensive Monte Carlo study confirmed the

remarkable accuracy of (6.4). We do not reproduce the values for conciseness.
For p=c (normal distribution), (6.5) mduces to (6.1)

For large n and small o/N, all the three estimators Yo ﬁc and ﬁn are

approximately normally distributed. The length of a confidence interval being
determined by the magmtude of the standard error of an estimate, the confidence
interval based on u will clearly be the shortest on the average, since

E(s) = o, E(on) = ¢ and E(oc) = o (for p=).

Example.: 1t is stated in Section 4 that the estimators ﬁn and Gn have
very high precision and are fairly insensitive to moderate departures from the
true value of p in (2.1). To 1llustrale this, consider the following n= 10 ordered
observations :-

8.4449 9.0782 9.4161 9.6709 9.8933 10.1067 10.329i 10.5839 10.9218 11.5551

These observations come from (2.1) exactly with p=3.5, u=10 and
o =1, since they were obtained by adding 10 to each of the corresponding
t; (i=1,2,..,10) values.

The estimates calculated from (3.16) - (3.19) are ﬁ= 10 and G = 1.00 which
are exactly the population values. The sample mean and sample standard
deviation are y=10 and s=0.91.

To illustrate the robustness to moderate departures from the true value
p=3.5, assume a somewhat different value for p and compute the estimates
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from the data above. For p=3, we get ﬁ= 10 and 6 =1.03. For p=4, we
A A . . A A .
get n=10 and 6=098. It is clear that the estimators p_and o, are fairly

robust numerically; see also Bian and Tiku [1].

7. Sample Size Detenﬁinalion

Often in practice one wants to pre-determine the sample size n such that the
MSE of a subseq}\Jent estimator (of p) does not exceed a given limit D. The
estimators y_and p_ are typically suited to solve such sample-size determination

problems :
Equating the MSE of y_to D, we get

0_2

n=——— 7.1
(D+0*/N) -1
Equating the MSE of ﬁn to D, we get
3
: (P—i] p+1)
c
n= 7.2)

7 1) (D+0*/N)
p(p-g} |

Since (;‘)—%J p+1)/p p—% <1, ﬁn requires a considerably smaller n than
1

y, to attain the same pre-detem_liue(’i MSE. Consequently, its use will lead to

considerable saving in the cost.

Values of o® and p in (7.1) - (7.2) are obtained from a training sample.
The information about p is obtained from a Q - Q plot. That is, the order
statistics of the training sample are plotted against the expected values
t (i=1,2,..,n). The value of p which produces a straight line (or closest
to such) is the required value of p. For large n (> 20, say) t;, may be obtained
from the equation

1 o z ” i '
1 ] J‘{l-i-r} dl=m, i=1,2,..,n) 7.3)
‘/EB 5» p_i

Note that (7.3) is essentially the cumulative distribution function of a Student’s
t distribution and is easy to evaluate.
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8. Stratified Sampling

It suffices to extend the MML method above to stratified random sampling.
The robust method extends along similar lines, and the classical method based
on strata means. and variances is well known.

Suppose that a population is divided into L non-overlapping strata and
there are N, elements in the hth strata. Let (h=1,2,...,L)

Yh1> Yh2s <+ Yhn (8.1)

h

be a simple random sample of size n, from the hth strata. The n, order statistics

of this simple random samPIe are used in equations (3.16) - (3.18) to obtain
. A .
the estimators w, and o, (h=1,2,..,L). These equations also use the

information about the shape parameter p in (2.1). In the hth stratum, let p have
the value p, (h=1,2,..,L). In particular, p, could be all equal.

The MML estimator of the population mean

L L
-— 1 —
N=N & NaYn N= 3 N, ®8.2)
h=1 h=1
is
1 L
A A
Hy = 2 Nully 8.3)

h=l |

The standard errdr of this estimate is given by

' 3
L [ Pn=3|(Pr+ 1)
1 2 2 1 iy Aa
= z Nh - 1— Oh (8.4)
N2 llh [ ]
h=1 1
1P (l)h —5]

For p, =~ (h=1,2,..,L), ﬁsl reduces to the classical estimator

+

L

— 1 —

Vo= 2 Na¥h 8.5)
h=
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and (8.4) reduces to the standard error of Yo i€

L N T
1 , 1 LR
+ — Ny —|1—-—15s (8.6)
v N2 }E h nh [ NhJ h .
where .
1 < 1 -
Vo= == 2 Y and =T Y -V ®8.7)
h iy h =1

Note that (8.4) is, on the average, considerably smaller than (8.6) ekcept when
P, = (h=1,2,..,L) in which case they are exactly the same.

9. Cost Function

The simplest cost function is of the form (Cochran [61, pp. 96)
L
C = Co+ Y, Cpmy ©.1)
h=1
For simplicity, assume that p, =p forallh=1,2,..,L, ie., the underlying

distribution in all the L strata are identical (other than the location and scale
parameters) and are given by (2.1) with a common p. The location and scale
parameters in the hth stratum are denoted by p, and o, respectively.

Let D be a pre-determined value of the MSE of y,- The value of n that
minimizes the cost C is given by (Cochran {6], pp. 96-98).
(B Wyon VCy ) B (Wh 0w/ VCp)
D+(1/N) I, W, op

n , (Wh = Nh/ N) (9.2)

Using the estimator ﬁ o and its MSE, and proceeding exactly on the same

lines, the value of n which minimizes the cost C" is given by

e (2, Wy, 0, VCp) By (W 0/ VCp)
{p( —%J/[})—%J(p+l)} D+(1/N) %, Wy, o1

Since p (p—%)/ (p——;—) (p+1)>1,(8.10) is smaller than (8.9). The use

(9.3)

A i . .
of n, therefore, leads to substantial savings in the cost.
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In continuation to this.-paper, we are working out results for skew
distributions. We will report these results in a future paper. ’

Concluding remark : From the results presented in this paper it is clear that
the utilization of modemn statistical inference procedures in sample survey can
give considerably more precise estimates than those based on the classical
assumption of normality which hardly every holds true; see also Wong [29]
who reflects on the divergence of sample survey theory and practice and makes
recommendations for closing the gap.
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APPENDIX

Exact values of the variances and covariances :
(M A7)V (o), (2)(1/o ) Cov (fle, ¥n)» 3) (17 6%) V (fla), (4) (1/ 6®) Cov (fin, Vs

for the family (2.1)

JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

n m p M @ @ 4
3.5167 1.5 0.32473 | '0.37500 0.32472 0.37500
20 0.15804 | 0.15501 0.15924 | 0.16882
25 0.20767 0.19286 0.20834 0.21761
35 0.24555 0.21853 0.23569 0.23973
4.5 026117 0.22835 0.24298 0.24509
5.0 0.23128 0.23999 0.24470 '0.2463i
o0 0.28436 | 0.25000 0.25000 0.25000
5 4.5627 1.5 0.26151 031507 0.23909 0.29137
> 20 0.12377 0.12717 0.12014 0.12233
25 0.16091 0.15689 0.15993 0.16657
35 0.18857 0.17658 0.18519 0.18879
45 0.19976 0.18398 | 0.19252 0.19452
50 0.20317 0.18617 0.19431 0.19587
o0 0.21917 0.20000 0.20000 0.'20000
6 5.5941 1.5 0.22490 | 0.27526 0.18782 0.23378
20 0.10355 0.10863 0.09700 | '0.09560
25 0.13319 0.13293 | 0.12985 0.13443
35 0.15327 0.14862 | 0.15235 0.15539
45 0.16316 0.15441 0.15928 0.16106
50 0.16183 0.15611 0.16101 0.16242
o0 0.17876 0.16667 0.16667 0.16667
7 6.6172 1.5 0.19964 | 0.24585 0.15402 0.19275
20 0.08975 0.09515 0.08149 0.07847
25 0.11435 0.11561 0.10937 0.11251
35 0.13172 012851 0.12936 0.13188
4.5 0.13847 0.13318 0.13578 0.13733
50 0.14050 0.13454 0.13741 0.13865
) 0.15112 0.14286 0.14286 0.14286
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8 7.6352 1.5 0.18065 022294 | 0.13026 | 0.16261
20 0.07956 | 0.08481 0.07028 | 0.06662

25 0.10055 0.10242 | 0.0945! 0.09666

35 0.11501 0.11328 0.11237 | 0.11448

45 0.12054 | 0.11714 [ 0.11829 [ 0.11964

50 0.12219 | 0.11826 | 0.11982 | 0.12091

o0 0.13097 0.12500 | 0.12500 | 0.12500

9 8.6497 15 0.16562 | 0.20437 0.11274 | 0.13971
20 0.07164 | 0.07660 | 0.06178 0.05794

25 0.08991 0.09201 0.08324 | 0.08471

335 0.10223 0.10133 0.09933 0.10109

45 0.10687 0.10460 | 0.10479 | 0.10596

5.0 0.10823 0.10553 0.10621 0.10716

o0 0.11561 0.11111 0.11111 0.11111

10 9.6617 1.5 0.15333 0.18902 | 0.09932 | 0.12196
20 0.06529 0.06991 0.05511 0.05133

25 0.08143 0.08358 | 0.07438 0.07538

35 0.09211 0.09169 0.08900 | 0.09048

45 0.09606 | 0.09450 | 0.09405 0.09507

50 0.09722 | 0.09530 | 0.09537 0.09621

o0 0.10350 | 0.10000 | 0.10000 | 0.10000

11 10.6719 1.5 0.14302 | 0.17606 | 0.08875 0.10788
20 0.06004 | 0.06434 | 0.04973 0.04610

25 0.07448 | 0.07660 | 0.06723 0.06789

35 0.08386 0.08375 0.08061 0.08188

45 0.08728 0.08620 | 0.08530 | 0.08619

5.0 0.08829 0.08689 0.08654 | 0.08728

o0 0.09370 | 0.09091 0.09091 0.09091

12 11.6807 15 0.13422 | 0.16495 0.08019 0.09649
20 0.05562 | 0.05962 | 0.04530 | 0.04138
25 0.06866 | 0.07071 0.06134 | 0.06176

35 0.07699 0.07708 0.07367 0.07475

45 0.08002 007924 | 007804 | 0.07883
5.0 0.08089 0.07985 0.07920 | 0.07986

0.08561 0.08333 0.08333 0.08333
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12.6883 15 0.12660 | 0.15529 | 0.07314 | 0.08713

2.0 0.05186 | 0.05557 | 0.04139 | 0.03839

2.5 0.06373 | 0.06568 | 0.05640 | 0.05664

35 0.07122 | 007142 | 0.06784 | 0.06877

45 0.07389 | 0.07333 | 0.07191 | 0.07261

5.0 0.07466 | 0.07387 | 0.07300 | 0.07360
w0 0.07881 | 0.07692 | 0.07692 | 0.07692 -

14 13.6951 1.5 0.11009 | 0.14162 | 0.06707 | 0.08041
2.0 0.04860 | 0.05206 | 0.03843 | 0.03545

2.5 0.05949 | 0.06134 | 0.05220 | 0.05232

35 0.06626 | 0.06654 | 0.06285 | 0.06367

45 0.06865 | 0.06826 | 0.06668 | 0.06731

5.0 0.06933 | 0.06873 | 0.06770 | 0.06823

oo 0.07302 | 0.07143 | 0.07143 | 0.07143

15 14.2534 1.5 0.08500 | 0.10709 | 0.06225 | 0.07275
2.0 0.03350 | 0.04103 | 0.03548 | 0.03249

2.5 0.05195 | 0.05339 | 0.04858 | 0.04861

35 0.06029 | 0.05970 | 0.05856 | 0.05929

45 0.06353 | 0.06199 | 0.06216 | 0.06272

5.0 0.06450 | 0.06265 | 0.06313 | 0.06361

oo 0.07016 | 0.06667 | 0.06667 | 0.06667

16 . | 152704 15 0.08123 | 0.10227 | 0.05787 | 0.06708
20 0.03808 | 0.03713 | 0.03335 | 0.03078

2.5 0.04893 | 0.04635 | 0.04544 | 0.04540

35 0.05656 | 0.05247 | 0.05480 | 0.05543

45 0.05951 | 0.05475 | 0.05821 | 0.05872

| . 5.0 0.06038 | 0.05542 | 0.05913 | 0.05956
o 0.06549 | 0.06250 | 0.06250 | 0.06250

17 16.2857 1.5 0.07787 | 0.09809 | 0.05389 | 0.06252
2.0 0.03614 | 0.03258 | 0.03128 | 0.02880

2.5 0.04625 | 0.04083 | 0.04267 | 0.04258

35 0.05329 | 0.04640 | 0.05151 | 0.05206

‘ 45 0.05595 | 0.04848 | 0.05471 | 0.05517
5.0 0.05677 | 0.04913 | 0.05561 | 0.05600

oo 0.06140 | 0.05882 | 0.05882 | 0.05882
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P 18 17.29%4 15 0.07483 0.09402 0.05082 0.05794

20 0.03442 | 0.02884 | 0.02946 | 0.02722

25 0.04388 | 0.03616 | 0.04168 0.04443

35 0.04959 | 0.04037 0.04774 | 0.04328

45 0.05286 | 0.04305 0.05165 0.05206

50 0.05318 0.04413 0.05248 0.05284

0 0.05781 0.05556 | 0.05556 | 0.05556

19 18.3120 1.5 0.07203 0.09042 | 0.04789 | 0.05426

20 0.03286 | 0.03557 0.02783 0.02574

25 0.04175 0.04317 0.03804 | 0.03788

35 0.04780 | 0.04781 0.04598 0.04642

45 0.04960 | 0.04385 0.04811 0.04864

50 0.05075 0.049%0 | 0.04969 0.05002

0 0.05461 0.05263 0.05263 0.05263

20 19.3234 1.5 0.06954 | 0.08715 0.04528 0.05098
20 0.03145 0.03405 0.02637 0.02442 -

25 0.03982 | 0.04122 | 003608 | 0.03591

35 0.04548 | 0.04556 | 0.04364 | 0.04403

45 0.04758 0.04706 | 0.04642 | 0.04677

50 0.04820 | 0.04749 | 0.04718 | 0.04748

0.05175 0.05000 | 0.05000 | 0.05000




